CTEQ GLOBAL QCD ANALYSIS

* PDFs for showering programs* PDFs with a variable QCD coupling

Pavel Nadolsky

Southern Methodist University Dallas, TX, U.S.A.

in collaboration with

J. Huston, M. Guzzi, H.-L. Lai, Z. Li, S. Mrenna, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan

June 23, 2010

CTEQ-Tung Et Al.: ongoing activities

- PDFs for leading-order Monte-Carlo programs (arXiv:0910.4183)
- lacktriangle Uncertainty in $lpha_s$ in the CTEQ PDF analysis (arXiv:1004.4624)
- General-purpose NLO PDF fits
 - CTEQ6.6 set (published in 2008)→ CT09 (not released)
 → CT10 (pre-released within CTEQ)
 - combined HERA and Tevatron Run-2 lepton asymmetry data are included
 - new statistical methods and parametrization forms
- Benchmarking of heavy-quark contributions

 2009 Les Houches Proceedinas
- Constraints on color-octet fermions (with Berger, Guzzi, Olness)
- Exploration of statistical methods and PDF parametrizations (Pumplin, arXiv:0909.0268 and 0909.5176)

CT09MC PDF's for leading-order Monte-Carlo generators at the LHC

Lai, Huston, Mrenna, P. N., Stump, Tung, Yuan, JHEP 1004, 035 (2010)

Related studies: Sherstnev, Thorne, arXiv:0711.2473; Jung, Sjostrand @ the HERA-LHC workshop

- **Leading-log** showering programs (PYTHIA, HERWIG,...) will remain ubiquitous tools in the observable future
- We wish to construct improved PDFs for showering programs at the LHC, to be used when NLO calculations (with or without showering) are not applicable for some reason
- These PDFs do not have to be "strictly at leading order", because showering introduces contributions beyond LO

Requirements for LO-MC PDFs

- LO DGLAP evolution
- Steep **LO** gluon PDF g(x,Q) at small x, required by models of underlying event
- when combined with LO matrix elements, reproduce NLO rapidity distributions for key LHC processes (production of $W^{\pm}, Z^0, H^0...$)
- \Rightarrow are about the same as NLO PDFs at large x, or exceed them

Resulting PDFs at Q=85 GeV

Q value: 85 GeV, for parton: g

Q value: 85 GeV, for parton: u

Is this liminal creature viable?

Let's examine the bones, focusing on fixed-order cross sections.

Modifications by parton showering (in PYTHIA) are smaller than the dependence on PDFs (⇒backup slides)

- NLO cross sections: more predictive
- LO cross sections: more uncertain (=flexible)

Option 1: Optimize the factorization scale μ_{LO}

Option 2: Optimize the factor $K = \sigma_{NLO}(\mu_{NLO})/\sigma_{LO}(\mu_{NLO})$ (i.e., the floating normalization of σ_{LO})

For $d\sigma_{NLO}/dy$, etc.,optimize **both** μ_{LO} and K to reproduce normalization and shape

CT09MC PDFs: selection of data

- Perform a **LO** fit to
 - ► CTEQ6.6 set of experimental data from DIS, production of vector bosons and jets (2700 points)
 - **pseudodata** at $\sqrt{s}=14$ TeV, containing **NLO predictions** probing typical combinations of PDFs at various (x,Q):
 - $\Diamond d\sigma/dy$ for $pp \to W^\pm X$, $pp \to Z^0 X$, $pp \to H^0 X$; $d\sigma/dM_{t\bar{t}}$ for $pp \to t\bar{t}X$; $d\sigma/dM_{b\bar{b}}$ for $gg \to b\bar{b}$ at $M_{b\bar{b}}$ of 10-50 GeV

All cross sections are at fixed order; modifications by showering are examined outside of the fit

Vary K_i and/or $\mu_{LO,i}$ in the fit

Three CT09MC PDF sets

PDF set	CT09MCS	CT09MC1	CT09MC2
$\mu_{LO,i}$	Varied	Fixed	Fixed
K_i	Varied	Varied	Varied
Loops in α_s	2	1	2
Momentum			
sum rule	enforced	relaxed	relaxed

lacktriangledown relaxation of the momentum sum rule (Sherstnev, Thorne) by 10-15% produces a more flexible $g(x,\mu)$, smaller K_i-1

Reconciling LO with the global data

- $\chi^2/d.o.f.$ is worse at LO than at NLO by 20-30%
- When the (mostly high-Q) LHC pseudodata are included, the agreement with the (mostly low-Q) real data deteriorates

Therefore:

- pseudodata errors (χ^2 weights) are chosen to balance between the agreement with the real data and pseudodata
- \blacksquare two-loop α_s improves χ^2
- Variable $\mu_{LO,i}$ and K_i improve χ^2
- relaxed momentum sum slightly improves χ^2

$d\sigma/dy$ for conventional LO PDFs

LO ME-LO PDF (CTEQ6L1) vs. LO-NLO (CTEQ6.6M) vs. NLO-NLO (CTEQ6.6M)

- Significant differences in normalizations and shapes between LO-CTEQ6L1 and LO-CTEQ6.6M predictions
- Unphysical forward-backward peaking in the LO-CTEQ6L1 d\u00f3/dy for W⁺ production

CT09MCS (scale) set

Two-loop $\alpha_s(\mu)$; vary μ and K; enforce momentum sum

Agreement with normalization and shape of NLO cross sections

	W^+	W^-	Z	H	$t ar{t}$	$b'\overline{b'}$
μ_i	1.96 M _W	1.96 M _W	1.96 M_Z	1.06 M _H	1.41 M_t	$0.40~M_{b'\overline{b'}}$
K_i	1.11	1.09	1.09	1.87	2.09	4.09

One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum

W+ rapidity distribution

Best-fit K factors

Besi-III K I	actor	S
	MC1	MC2
W^+	1.00	1.02
W-	0.99	1.00
Z^0	0.98	1.00
H^0	1.22	1.32
t ar t	1.09	1.09
$b'ar{b}'$	2.70	3.13
mom. sum	1.10	1.14

LO cross sections are plotted without ${\cal K}$ factors

One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum

Z rapidity distribution

Best-fit K factors

actor:	S
MC1	MC2
1.00	1.02
0.99	1.00
0.98	1.00
1.22	1.32
1.09	1.09
2.70	3.13
1.10	1.14
	MC1 1.00 0.99 0.98 1.22 1.09 2.70

LO cross sections are plotted without ${\cal K}$ factors

One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum

SM Higgs boson rapidity distribution

Best-fit K factors

Besi-III K I	acion	S
	MC1	MC2
W^+	1.00	1.02
W^-	0.99	1.00
Z^0	0.98	1.00
H^0	1.22	1.32
t ar t	1.09	1.09
$b'ar{b}'$	2.70	3.13
mom. sum	1.10	1.14

LO cross sections are plotted without K factors

One- and two-loop $\alpha_s(\mu)$; vary μ and K; relax momentum sum

tt mass distribution

Doot fit	77	factors
DESI-III	n	factors

DESI-III N	acioi.	5
	MC1	MC2
W^+	1.00	1.02
W^-	0.99	1.00
Z^0	0.98	1.00
H^0	1.22	1.32
$tar{t}$	1.09	1.09
$b'ar{b}'$	2.70	3.13
mom. sum	1.10	1.14

LO cross sections are plotted without K factors

CT09MC approximation for other LHC cross sections...

... may or may be not adequate in general, depending on the similarity to the fitted cross sections

...works reasonably well for $pp \to H^0 X$ via vector boson fusion, for a few other examined processes

Uncertainty in α_s in the CTEQ6.6 and CT10 PDF analysis

arXiv:1004.4624

- Two leading theoretical uncertainties in LHC processes are due to α_s and the PDFs
- These are not independent uncertainties; how can one quantify their correlation?
- Which central $\alpha_s(M_Z)$ and which error on $\alpha_s(M_Z)$ are to be used with the existing PDFs?
- What are the consequences for key LHC processes $(gg \rightarrow H^0$, etc.)?

Uncertainty in α_s in the CTEQ-TEA PDF analysis arXiv:1004.4624

Recent activity to examine these questions, e.g.:

- **MSTW** (arXiv:0905.3531)
 - $ightharpoonup lpha_s(M_Z)$ is an **output** of the global fit (constrained by the hadronic scattering only)
 - ▶ several sets of error PDFs, each with its own $\alpha_s(M_Z)$ value \Rightarrow lengthier calculations
 - lacktriangle The $lpha_s$ uncertainty and PDF uncertainty are inseparable
- NNPDF (in 2009 Les Houches Proceedings, arXiv:1004.0962):
 - $ightharpoonup lpha_s(M_Z) = 0.119 \pm 0.002$ is taken as an **input**
 - ho $lpha_s-$ PDF correlation is examined with \sim 1000 PDF replicas and found to be small
- **H1+ZEUS** (arXiv:0911.0884): sensitivity of the HERAPDF set to $\delta \alpha_s(M_Z) = \pm 0.002$ is explored

CTEQ6.6FAS analysis

■ Take the "world-average" $\alpha_s(M_Z)=0.118\pm0.002$ as an **input**:

$$\left. lpha_s(M_Z) \right|_{\mbox{in}} =$$
 0.118 \pm 0.002 at 90% C.L.

■ Find the theory parameter $\alpha_s(M_Z)$ as an **output** of a global fit (CTEQ6.6FAS):

$$\left. lpha_s(M_Z) \right|_{\mbox{OUT}} = 0.118 \pm 0.0019$$
 at 90% C.L.

lacktriangle The combined PDF+ $lpha_s$ uncertainty is estimated as

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{22+1} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$

- **Problem**: each PDF set comes with its own α_s ⇒ cumbersome
- A simple workaround exists!

A quadrature sum reproduces the α_s -PDF correlation H.-L. Lai, J. Pumplin

Theorem

In the quadratic approximation, the total α_s+PDF uncertainty $\Delta\sigma$ of the CTEQ6.6FAS set, with all correlation, reduces to

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{\alpha_s}^2},$$

where

- lacktriangledown $\Delta X_{CTEQ6.6}$ is the CTEQ6.6 PDF uncertainty from 44 PDFs with the same $lpha_s(M_Z)=0.118$
- $\Delta X_{\alpha_s} = (X_{0.120} X_{0.116})/2$ is the α_s uncertainty computed with two central CTEQ6.6AS PDFs for $\alpha_s(M_Z) = 0.116$ and 0.120

The full proof is given in the paper and backup slides

PDF and α_s uncertainties for $gg \to H$ and $t\bar{t}$ production

Full and reduced fits with variable α_s : cross sections

Process	CT	EQ6.6+C	TEQ6.6A	AS	CTEQ6.6FAS
$t\overline{t}$ (171 GeV)	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
LHC 7 TeV	157.41	10.97	7.54	13.31	160.10 ± 13.93
LHC 10 TeV	396.50	18.75	16.10	24.71	400.48 ± 25.74
LHC 14 TeV	877.19	28.79	30.78	42.15	881.62 ± 44.27
$gg \to H \ (120 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
Tevatron 1.96 TeV	0.63	0.042	0.032	0.053	0.64 ± 0.055
LHC 7 TeV	10.70	0.31	0.32	0.45	10.70 ± 0.48
LHC 10 TeV	20.33	0.66	0.56	0.87	20.28 ± 0.93
LHC 14 TeV	35.75	1.31	0.94	1.61	35.63 ± 1.70
$gg \to H \ (160 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
$gg \rightarrow H \ (160 \ {\rm GeV})$ Tevatron 1.96 TeV	σ_0 0.26	$\Delta \sigma_{PDF}$ 0.026	$\Delta \sigma_{\alpha_S}$ 0.015	$\Delta \sigma$ 0.030	$\sigma_0 \pm \Delta \sigma$ 0.26 ± 0.031
Tevatron 1.96 TeV	0.26	0.026	0.015	0.030	0.26 ± 0.031
Tevatron 1.96 TeV LHC 7 TeV	0.26 5.86	0.026 0.16	0.015 0.18	0.030 0.24	0.26 ± 0.031 5.88 ± 0.26
Tevatron 1.96 TeV LHC 7 TeV LHC 10 TeV	0.26 5.86 11.73	0.026 0.16 0.33	0.015 0.18 0.33	0.030 0.24 0.47	0.26 ± 0.031 5.88 ± 0.26 11.72 ± 0.50
Tevatron 1.96 TeV LHC 7 TeV LHC 10 TeV LHC 14 TeV	0.26 5.86 11.73 21.48	0.026 0.16 0.33 0.68	0.015 0.18 0.33 0.56	0.030 0.24 0.47 0.88	0.26 ± 0.031 5.88 ± 0.26 11.72 ± 0.50 21.43 ± 0.94
$\begin{tabular}{ll} Tevatron 1.96 TeV \\ LHC 7 TeV \\ LHC 10 TeV \\ LHC 14 TeV \\ \hline $gg \to H$ (250 GeV) \\ \end{tabular}$	0.26 5.86 11.73 21.48 σ_0	0.026 0.16 0.33 0.68 $\Delta \sigma_{PDF}$	0.015 0.18 0.33 0.56 $\Delta \sigma_{\alpha_S}$	0.030 0.24 0.47 0.88 $\Delta \sigma$	$\begin{aligned} 0.26 &\pm 0.031 \\ 5.88 &\pm 0.26 \\ 11.72 &\pm 0.50 \\ 21.43 &\pm 0.94 \\ \sigma_0 &\pm \Delta \sigma \end{aligned}$
$\begin{tabular}{ll} Tevatron 1.96 TeV \\ LHC 7 TeV \\ LHC 10 TeV \\ LHC 14 TeV \\ gg \rightarrow H~(250 \ GeV) \\ Tevatron 1.96 TeV \\ \end{tabular}$	0.26 5.86 11.73 21.48 σ_0 0.055	0.026 0.16 0.33 0.68 $\Delta \sigma_{PDF}$ 0.0099	0.015 0.18 0.33 0.56 $\Delta \sigma_{\alpha_S}$ 0.0044	0.030 0.24 0.47 0.88 $\Delta \sigma$ 0.011	0.26 ± 0.031 5.88 ± 0.26 11.72 ± 0.50 21.43 ± 0.94 $\sigma_0 \pm \Delta \sigma$ 0.058 ± 0.012

The full and reduced methods perfectly agree

Summary

CT09MC PDFs

- a reasonably successful attempt to construct PDFs for LO showering programs
- by their design, the PDFs reproduce key LHC inclusive cross sections at NLO
- compatible with existing tunes of MC programs

Summary II

CTEQ6.6AS PDF sets:

■ 4 alternative CTEQ6.6 fits for

$$\alpha_s(M_Z) = 0.116, 0.117, 0.119, 0.120$$

- sufficient to compute uncertainty in $\alpha_s(M_Z)$ at \approx 68% and 90% C. L., including the world-average $\alpha_s(M_Z)=0.118\pm0.002$ as an input data point
- The CTEQ6.6AS α_s uncertainty should be combined with the CTEQ6.6 PDF uncertainty as

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{CTEQ6.6AS}^2}$$

■ The total uncertainty ΔX reproduces the full correlation between $\alpha_s(M_Z)$ and PDFs

Summary III

Heavy-quark benchmarking, new statistical methods, and other developments

Backup slides

Effect of parton showering on CT09MC predictions

PYTHIA predictions for $gg \rightarrow H$, with and without contributions from the initial-state radiation

Kinematic showering effects are mild, compared to the PDF dependence, for invariant masses $\gtrsim 100~{\rm GeV}$

Quadrature theorem for 2 parameters

$$\Delta X_1^2 = \frac{1}{4} (X(B) - X(D))^2 \qquad \Delta X_0^2 = \frac{1}{4} (X(A) - X(C))^2$$

Quadrature theorem for 2 parameters, cont.

$$\Delta X^{2} = \frac{1}{4} \left[(X(A) - X(C))^{2} + (X(B) - X(D))^{2} \right]$$

= $\Delta X_{0}^{2} + \Delta X_{1}^{2}$

Our findings

Total PDF+ α_s errors ΔX are the **same** when found (a) from a full fit with floating α_s , or (b) by adding ΔX_{PDF} and ΔX_{α_s} in quadrature

- black CTEQ6.6 PDF uncertainty
- Blue filled PDF+ α_s uncertainty of the fit with floating $\alpha_s(M_Z)$
- Green hatched PDF+ α_s uncertainty added in quadrature

Correlation cosine between CTEQ6.6FAS PDFs and $\alpha_s(M_Z)$ Based on the method in the CTEQ6.6 paper, PRD 78, 013004 (2008)

CTEQ6.6FAS; correlation of $\alpha_o(M_Z)$ with $f_o(x,Q)$

$$\cos \varphi = \frac{1}{4\Delta X \Delta Y}$$

$$\times \sum_{i=1}^{23} \left[\left(X_i^{(+)} - X_i^{(-)} \right) \left(Y_i^{(+)} - Y_i^{(-)} \right) \right]$$

Variations in $\alpha_s(M_Z)$ mostly affect:

- \blacksquare g(x,Q) at $x \approx 0.01$
- c(x,Q) at $x \approx 0.1$
- Singlet quark at $x \approx 0.5$